
EFFICIENTLY MINING CLOSED INTERVAL
PATTERNS WITH CONSTRAINT PROGRAMMING

D. Bekkoucha1, A. Ouali1, P. Boizumault1, B. Crémilleux1

1Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, FRANCE

djawad.bekkoucha@unicaen.fr

Outline

▶ Context:
▶ Mining numerical datasets

▶ Interval patterns

▶ Contributions:
▶ Reified model

▶ Global constraint

▶ Experimental results

▶ Conclusion and Perspectives

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 2 / 38

Data Mining
▶ Data mining reveals implicit relationships in a large volume of data

Height Weight Age Severe form
m1 m2 m3 c

g1 155 74 80 1
g2 176 99 74 0
g3 167 73 28 0
g4 153 76 52 1
g5 190 99 76 0

Table: Numerical dataset N

▶ People with a height between [153, 155], weight between [74, 76] and age
between [52, 80] are more exposed to extreme forms of a certain disease

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 3 / 38

Notation
▶ G : Set of objects in N
▶ M : Set of attributes in N
▶ Nm : Set of numerical values contained in attribute m ∈ M

Height Weight Age
m1 m2 m3

g1 155 74 80
g2 176 99 74
g3 167 73 28
g4 153 76 52
g5 190 99 76

Table: Numerical dataset N

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 4 / 38

Interval Patterns

Definition
An interval pattern V is a vector of |M|intervals where each interval corresponds
to an attribute m ∈ M

V = ⟨[ai, bi]i∈{1,...,|M|}⟩, ai, bi ∈ Ni ∧ ai ≤ bi

▶ Example

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 5 / 38

Interval Patterns

Definitions
▶ Cover: cover(V) = {g ∈ G|

∧
m∈M

xm ≤ vg,m ≤ xm s.t. vg,m ∈ Nm}

▶ Frequency: freq(V) = |cover(V)|
▶ Description:

desc(G ⊆ G) = ⟨[am, bm]⟩m∈{1,...,|M|} s.t. am = min({vg,m | g ∈ G}) ∧ bm = max({vg,m | g ∈ G})

Example
▶ cover(⟨[153, 155][73, 76][52, 80]⟩) = {g1, g4}
▶ freq(⟨[153, 155][73, 76][52, 80]⟩) = |{ g1, g4}| = 2

▶ desc({g1, g4}) = ⟨[153, 155][74, 76][52, 80]⟩

Height Weight Age
m1 m2 m3

g1 155 74 80
g2 176 99 74
g3 167 73 28
g4 153 76 52
g5 190 99 76

Table: Numerical dataset N

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 6 / 38

Interval Patterns
Limitations

The enumeration of all the interval patterns leads to:
▶ Combinatorial explosion in the number of patterns
▶ Redundancy of the extracted interval patterns

Example
▶ ⟨[153, 155][73, 76][52, 80]⟩, {g1, g4}
▶ ⟨[153, 155][74, 76][28, 80]⟩, {g1, g4}
▶ ⟨[153, 167][74, 76][52, 80]⟩, {g1, g4}
▶ ⟨[153, 155][74, 76][52, 80]⟩, {g1, g4}

Redundant Interval Patterns

Height Weight Age
m1 m2 m3

g1 155 74 80
g2 176 99 74
g3 167 73 28
g4 153 76 52
g5 190 99 76

Table: Numerical dataset N

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 7 / 38

Closed Interval Patterns
Closure
An interval pattern V is closed if there does not exists V ′ sharing the same support
and having strictly smaller intervals than those of V .

close(V) ⇐⇒ desc(cover(V)) = V

Example for 3 attributes
▶ ⟨[153, 155][73, 76][52, 80]⟩, {g1, g4}
▶ ⟨[153, 155][74, 76][28, 80]⟩, {g1, g4}
▶ ⟨[153, 167][74, 76][52, 80]⟩, {g1, g4}
▶ ⟨[153, 155][74, 76][52, 80]⟩, {g1, g4}

Condensed representation 153
155

167
176

190
73

74

76

99

28

52

74

76

80

Height

Weight

Age

(G2)

(G3)

(G5)

(G1)

(G4)

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 8 / 38

Mining Closed Interval Patterns
Existing approaches

▶ Dedicated approach: [Kaytoue and al. 2011] present MinIntChange, a
dedicated approach for mining closed interval patterns
▶ Lack of genericity

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 9 / 38

Declarative Approaches for Binary data
▶ Itemsets: [De Raedt et al. KDD 2008], [khiari et al. CP 2010] ,[Schaus et al. CP

2017] , [Mamaar et al. CP 2016], [Belaid et al. SDM 2019]

▶ Sequential patterns: [Kemmar et al. Constraints 2017], [Aoga et al.
ECML/PKDD 2016], [Négrevergne et al. CPAIOR 2015]

▶ Sky Patterns: [Ugarte et al. 2017], [Vernerey et al. IJCAI 2022], [Négrevergne et
al. ICDM 2013], [Ugarte et al. ICTAI 2015]

▶ Top-K patterns: [Jabbour et al. ECML/PKDD 2013], [Hidouri et al. DaWaK
2021],

What about numerical Data ?

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 10 / 38

Binarization
▶ Binarize numerical data with Interordinal Scaling to avoid information loss
▶ Create pairs of binary attributes (items) for each numerical value:

∀m ∈ M, g ∈ G m ≤ wg,m and m ≥ wg,m

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 11 / 38

Contributions

Since there is no declarative approach for mining closed interval patterns, we
present:

▶ A reified model named CP4CIP for mining closed interval patterns without
prior binarization

▶ A global constraint named GC4CIP for mining closed interval patterns without
prior binarization

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 12 / 38

First Model using Reified Constraints
Modeling intervals

Decision variables: Variables representing the borders of intervals:

∀m ∈ M, x, x : D(xm) = D(xm) = Nm

Example
▶ D(xm1

) = D(xm1) = {153, 155, 167, 176, 190}
▶ D(xm2

) = D(xm2) = {73, 74, 76, 99}
▶ D(xm3

) = D(xm3) = {28, 52, 74, 76, 80}

Height Weight Age
m1 m2 m3

g1 155 74 80
g2 176 99 74
g3 167 73 28
g4 153 76 52
g5 190 99 76

Table: Numerical dataset N

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 13 / 38

First Model using Reified Constraints
Inclusion

Inclusion variables: ∀m ∈ M, g ∈ G, Bg,m : D(Bg,m) = {0, 1}
▶ Used in the inclusion constraints:

∀m ∈ M, g ∈ G, Bg,m = 1 ⇐⇒ min(D(xm)) ≤ vg,m ≤ max(D(xm))

Example

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 14 / 38

First Model using Reified Constraints
Coverage

Coverage variables: ∀g ∈ G, yg : D(yg) = {0, 1}
▶ Used in coverage constraints

∀g ∈ G, yg = 1 ⇐⇒
∑
m∈M

Bg,m = |M|

Example

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 15 / 38

First Model using Reified Constraints
Closure

Closure variables: ∀g ∈ G,m ∈ M, Hg,m, Hg,m :

{
D(Hg,m) = {vg,m} ∪ {N ↑

m + 1}
D(Hg,m) = {vg,m} ∪ {N ↓

m − 1}
▶ Used in closure constraints

∀g ∈ G,m ∈ M
{

yg = 1 =⇒ D(Hg,m) = D(Hg,m) = {vg,m}
yg = 0 =⇒ D(Hg,m) = {N ↑

m + 1}, D(Hg,m) = {N ↓
m − 1}

∀m ∈ M
{

xm = min(D(H1,m),D(H2,m), ...,D(H|G|,m)),

xm = max(D(H1,m),D(H2,m), ...,D(H|G|,m))

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 16 / 38

First Model using Reified Constraints
Model complexity

Variables:
▶ Interval representation: 2 · |M|
▶ Coverage representation: |G|
▶ Closure representation: 3 · |G| · |M|

Constraints:
▶ Inclusion constraints: |G| · |M|
▶ Coverage constraints: |G|
▶ Closure constraints: 4 · |G| · |M|+ 2 · |M|

Can we do better ?

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 17 / 38

Second Model using Global Constraints

Why global constraints ?
▶ Dedicated filtering algorithm
▶ Captures global relations within variables
▶ Simplifies the problem modeling
▶ Preserves the genericity

GC4CIP

Let V an interval pattern. The GC4CIPN ,θ(V) global constraint holds iff:
- V is closed, and
- V is frequent (i.e. freq(V) ≥ θ)

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 18 / 38

Second Model using Global Constraints
Specific data structure

Height Weight Age
m1 m2 m3

g1 155 74 80
g2 176 99 74
g3 167 73 28
g4 153 76 52
g5 190 99 76

Table: Numerical dataset N

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 19 / 38

Second Model using Global Constraints
Specific data structure

▶ D(xm2
) = D(xm2) = {73, 74, 76, 99}, D(xm3

) = D(xm3) = {28, 52, 74, 76, 80}

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 20 / 38

Second Model using Global Constraints
Specific data structure

▶ D(xm2
) = D(xm2) = {73, 74, 76, 99}, D(xm3

) = D(xm3) = {28, 52, 74, 76, 80}

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 21 / 38

Second Model using Global Constraints
Specific data structure

▶ D(xm2
) = D(xm2) = {73, 74, 76, 99}, D(xm3

) = D(xm3) = {28, 52, 74, 76, 80}

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 22 / 38

Second Model using Global Constraints
Filtering rules

Proposition 1
Let V∗ = ⟨[min(D(x1)),max(D(x1))], . . . , [min(D(x|M|)),max(D(x|M|))]⟩{

vg,m /∈ D(xm),
vg,m /∈ D(xm)

if :


∃m′ ∈ M,m ̸= m′, v

g,m
′ < min(D(xm′)) ∨ v

g,m
′ > max(D(xm′))

∧
∀g′ ∈ G, g ̸= g′ such that g′ is covered by V∗ , vg,m ̸= v

g
′
,m

Example

During the search we have:
▶ D(xm1

) = D(xm1) = {153, 155, 167, 190}
▶ D(xm2

) = D(xm2) = {73, 74, 76, 99}
▶ D(xm3

) = D(xm3) = {28, 52, 74, 76, 80}

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 23 / 38

Second Model using Global Constraints
Filtering rules

Proposition 1
Let V∗ = ⟨[min(D(x1)),max(D(x1))], . . . , [min(D(x|M|)),max(D(x|M|))]⟩{

vg,m /∈ D(xm),
vg,m /∈ D(xm)

if :


∃m′ ∈ M,m ̸= m′, v

g,m
′ < min(D(xm′)) ∨ v

g,m
′ > max(D(xm′))

∧
∀g′ ∈ G, g ̸= g′ such that g′ is covered by V∗ , vg,m ̸= v

g
′
,m

Example
During the search we have:
▶ D(xm1

) = D(xm1) = {153, 155, 167, 190}
▶ D(xm2

) = D(xm2) = {73, 74, 76, 99}
▶ D(xm3

) = D(xm3) = {28, 52,74, 76, 80}

Removing 74 from D(xm3
) and D(xm3)

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 24 / 38

Second Model using Global Constraints
Filtering rules

Proposition 2

Let m,m′ ∈ M, m ̸= m′
{

vg,m /∈ D(xm) if: vg,m > max(join(xm′ , xm))
vg,m /∈ D(xm) if: vg,m < min(join(xm′ , xm))

Example
During the search the domain of D(x2) has changed. We have:

Height Weight Age
m1 m2 m3

domains D(x1) D(x1) D(x2) D(x2) D(x3) D(x3)

g1 155 155 74 74 80 80
g2 176 176 99 99 74 74
g3 167 167 73 73 28 28
g4 153 153 76 76 52 52
g5 190 190 99 99 76 76

Table: Domains of the attributes variables

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 25 / 38

Second Model using Global Constraints
Filtering rules

Proposition 2

Let m,m′ ∈ M, m ̸= m′
{

vg,m /∈ D(xm) if: vg,m > max(join(xm′ , xm))
vg,m /∈ D(xm) if: vg,m < min(join(xm′ , xm))

Example
During the search the domain of D(x2) has changed. We have:

▶ Propagate the partial domain
knowledge on x2 to other domains

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 26 / 38

Second Model using Global Constraints
Filtering rules

Proposition 2

Let m,m′ ∈ M, m ̸= m′
{

vg,m /∈ D(xm) if: vg,m > max(join(xm′ , xm))
vg,m /∈ D(xm) if: vg,m < min(join(xm′ , xm))

Example
During the search the domain of D(x2) has changed. We have:

▶ Propagate the partial domain
knowledge on x2 to other domains

▶ join(x2, x3) = join(x2, x3) =
{28, 52, 76}

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 27 / 38

Second Model using Global Constraints
Filtering rules

Proposition 2

Let m,m′ ∈ M, m ̸= m′
{

vg,m /∈ D(xm) if: vg,m > max(join(xm′ , xm))
vg,m /∈ D(xm) if: vg,m < min(join(xm′ , xm))

Example
During the search the domain of D(x2) has changed. We have:

▶ Propagate the partial domain
knowledge on x2 to other domains

▶ join(x2, x3) = join(x2, x3) =
{28, 52, 76}

▶ 80 > max(join(x2, x3)) then remove
80 from D(x3)

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 28 / 38

Second Model using Global Constraints
Filtering rules

Proposition 3
Let m ∈ M, and Vp = ⟨[min(D(xi)),max(D(xi))]

▶ am /∈ D(xm) if freq(Vp ++ [am,max(D(xm))]) < θ

▶ bm /∈ D(xm) if freq(Vp ++ [min(D(xm)), bm]) < θ

Example

Let θ = 2 and suppose the following variables domains:
▶ D(xm1

) = {176, 190}, D(xm1) = {176, 190}
▶ D(xm2

) = D(xm2) = {73, 74, 76, 99}
▶ D(xm3

) = D(xm3) = {28, 52, 74, 76, 80}

Height Weight Age
m1 m2 m3

g1 155 74 80
g2 176 99 74
g3 167 73 28
g4 153 76 52
g5 190 99 76

Table: Numerical dataset N

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 29 / 38

Second Model using Global Constraints
Filtering rules

Proposition 3
Let m ∈ M, and Vp = ⟨[min(D(xi)),max(D(xi))]

▶ am /∈ D(xm) if freq(Vp ++ [am,max(D(xm))]) < θ

▶ bm /∈ D(xm) if freq(Vp ++ [min(D(xm)), bm]) < θ

Example
Let θ = 2 and suppose the following variables domains:
▶ D(xm1

) = {176,190}, D(xm1) = {176, 190}
▶ D(xm2

) = D(xm2) = {73, 74, 76, 99}
▶ D(xm3

) = D(xm3) = {28, 52, 74, 76, 80}

- freq(⟨[176,max(xm)] + +Vp⟩) = 2 ≥ θ then 176 is maintained in D(xm1
)

- freq(⟨[190,max(xm)] + +Vp⟩) = 1 < θ then Filter 190 from D(xm1
)

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 30 / 38

Second Model using Global Constraints
Model complexity

▶ The push down and push up has a worst case complexity of O(|G|). This is
simplified from O(SlogS |G|), where S is the maximal number of children of a
parent node.

▶ The GC4CIP worst case complexity is O(|M| · |G|3 · logS |G|)

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 31 / 38

Experimental protocol

Configuration:
▶ ORTools CP-Solver version 9.0 (C++)
▶ 5 hours timeout
▶ 512 GB of memory limit

Benchmark of numerical datasets:

NT AP BK Cancer CH Yacht LW
|M| 3 5 5 9 8 7 10
|G| 130 135 96 116 209 308 189

#distinct values 67 674 313 900 396 322 253
Interordinal scaled datasets

#Binary attributes 134 1348 626 1800 792 644 506

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 32 / 38

Experimental protocol
Compared approaches

We compared our approaches CP4CIP and GC4CIP to:

▶ Dedicated approaches
▶ MinIntChange: a closed interval pattern mining approach that does not require

any pre-post processing step

▶ Declarative approaches
▶ CP4IM: a reified model for mining closed patterns (itemsets) from binary data.

▶ CLOSEDPATTERN: a global constraint for mining closed patterns (itemsets) from
binary data.

Note: The comparison with CP4IM and CP4CIP requires pre-processing and
post-processing steps to handle numerical data.

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 33 / 38

Experimental results

▶ CP4CIP and GC4CIP have
better scalability then other
approaches

▶ CP4CIP outperforms
CP4IM in most of instances

▶ GC4CIP outperforms
CLOSEDPATTERN in all
instances

N θ # Sol CPU Time (s)
(%) (≈) CP4IM CLOSEDPATTERN p-p-processing CP4IM+p-p-p CLOSEDPATTERN+p-p-p CP4CIP GC4CIP

BK

80 106 1840.21 148.91 176.65 2016.86 325.56 271.10 89.63
70 107 15132.87 1457.99 1326.58 16459.45 2784.57 1770.22 655.63
60 107 TO 8643.34 6713.25 TO 15356.59 7311.24 2879.54
50 108 TO 28302.62 19307.70 TO 47610.32 18471.23 7780.65
20 108 TO TO TO TO TO TO 34598.10

Ca
nc

er

95 104 170.14 6.19 13.69 183.83 19.88 18.42 5.80
94 105 568.00 18.21 38.88 606.88 57.09 45.43 15.66
92 105 6944.07 294.14 542.82 7486.89 836.96 486.87 190.84
90 106 29787.19 1190.42 2348.45 32135.64 3538.87 1806.19 786.25

AP

80 105 783.92 175.02 55.21 839.13 230.23 28.55 19.18
70 106 5909.86 189.30 415.76 6325.62 605.06 194.64 128.83
60 106 18479.87 7995.84 1275.85 19755.72 9271.69 548.12 373.01
50 107 TO 23252.89 2964.71 TO 26217.60 1223.79 770.83
20 107 TO 43199.73 3052.93 TO 46252.66 5129.20 2891.55

0 107 TO TO TO TO TO 5867.37 2343.98

CH

95 106 25.59 1.16 29.93 55.52 31.09 5.98 1.60
90 105 608.94 36.58 224.70 833.64 261.28 89.81 38.42
85 106 4753.35 331.08 835.24 5588.59 1166.32 671.49 256.86
80 106 19154.96 1444.64 18009.40 37164.36 19454.04 2739.85 890.82
50 TO TO TO TO TO TO TO TO

LW
80 106 1612.68 96.91 174.46 1787.14 271.37 1638.03 181.81
70 106 12904.12 757.02 1279.34 14183.34 2036.36 9886.90 1269.50
60 107 TO 3436.91 5236.91 TO 8673.82 33 148.24 4,965.20
50 108 TO 11060.23 15588.10 TO 26648.33 TO 14298.64
20 TO TO TO TO TO TO TO TO

N
T

80 103 0.87 0.06 0.07 0.97 0.13 1.80 0.13
50 104 7.08 0.41 0.50 7.58 0.91 11.01 0.91
20 104 28.13 1.53 1.83 29.96 3.36 28.77 2.89
10 105 41.75 2.51 2.61 44.36 5.12 32.50 4.02
0 105 62.48 2.88 3.13 65.61 6.01 33.72 3.81

Ya
ch

t

80 104 40.12 2.03 83.20 123.32 85.23 90.92 2.45
50 106 7277.85 336.03 268.28 7546.13 604.31 4090.63 181.63
40 106 30519.66 1282.32 727.09 31246.75 2009.41 9380.16 501.52
30 107 TO 4265.71 1695.63 TO 5961.34 20464.22 1179.13
20 107 TO 12898.20 2874.08 TO 15772.28 33294.36 2487.68

0 107 TO TO TO TO TO TO 4116.60

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 34 / 38

Experimental results

10
0

10
1

10
2

10
3

10
4

0 10 20 50 80 20 50 60 70 80 80 90 92 94 95 20 50 60 70 80 20 30 40 50 80 20 30 40 50 80 0 20 50 70 80

NT
|G| = 130 , |M| = 3

LW
|G| = 189 , |M| = 10

CANCER
|G| = 116 , |M| = 9

BK
|G| = 96 , |M| = 5

YACHT
|G| = 308 , |M| = 7

CH
|G| = 209 , |M| = 8

AP
|G| = 135 , |M| = 5

C
P

U
 t

im
e

(s
)

Frequency (%)

CP4CIP
GC4CIP

MININTCHANGE

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 35 / 38

Conclusion

▶ We presented two declarative approaches for mining closed interval patterns:
▶ A reified model denoted CP4CIP
▶ A global constraint denoted GC4CIP

▶ We demonstrated the efficiency of mining interval patterns directly from
numerical data

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 36 / 38

Perspectives

▶ Improve the filtering algorithm of GC4CIP with a different data structure

▶ Reduce the amount of mined Interval Patterns by:
▶ mining diversified interval patterns
▶ mining patterns according to a user feedback (interactive pattern mining)

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 37 / 38

The end

Thank you

Any Questions ?

djawad.bekkoucha@unicaen.fr

D. Bekkoucha & al. Efficiently Mining Closed Interval Patterns with Constraint Programming 38 / 38

	Pattern mining
	Second section

